ON THE RATE MAXIMA OBSERVED IN THE ACID-HYDROLYSIS OF SOME ALKYLHYDROXAMIC ACIDS

A J Buglass*, M Dorr, and M Juffkins

Department of Science, Cambridge College of Arts and Technology, Cambridge, CB1 1PT

<u>Abstract</u>. Rate maxima seen in the acid-hydrolysis of 2,2-dimethyl- and phenylacetohydroxamic acids are discussed in terms of acid-base equilibria, transition state formation and the different acidity functions that control these steps.

Maxima have been observed for plots of observed rate constant (k_{obs}) versus acid concentration in the acid-hydrolysis of a wide variety of substrates, including arylhydroxamic acids¹. These maxima are usually attributed to the existence of an A-2 mechanism, with an acid-base pre-equilibrium step. Mane and Jagdale also offer this explanation in their work on the acid-hydrolysis of acetohydroxamic acid and similar compounds². However they present no evidence for the proposed acid-base equilibrium. Since there are other situations which can give rise to rate maxima¹, it was thought necessary to investigate more closely the acid-hydrolysis of some alkylhydroxamic acids. Accordingly, we report the results of a preliminary investigation into the acid-catalysed hydrolysis of 2,2-dimethylacetohydroxamic (I) and phenylacetohydroxamic acid (II)³ in aqueous sulphuric acid.

A rate maximum is observed in each case (Fig 1) and both substances are shown conclusively to be involved in an acid-base equilibrium as indicated by a study of their uv spectra in sulphuric acid solutions of concentrations up to 10 M.

 $\frac{\text{Figure 1}}{\text{Rate Profile for the}}$ Rate Profile for the Hydrolysis of I and II in H_2SO_4 at 49.8°

Analysis of the equilibrium data by both a conventional acidity function method⁴ and by Carpentier's method⁵ indicates that I and II are Hammett bases for the amide acidity function H_A (⁴H in Carpentier's terminology): the acid-base equilibrium is governed by the amide acidity function. Thus a plot of logI versus H_A for both I and II is linear with a slope of unity and pK_{BH} is -1.50 and -1.55 respectively. Similarly, a plot of $1/(A-A_B)$ versus $1/h_A$ is also linear and pK_{BH} is calculated as -1.40 and -1.66 respectively.

Analysis of the kinetic data below the acidity function value corresponding to $p_{R_{BH}}^{H_{BH}}$ (below 3.0 <u>M</u> - H₂SO₄) was carried out by plotting log k_{obs} against H_x (various acidity functions)⁶. These plots are linear with unit slope only for the ketone acidity function (⁵H in Carpentier's terminology). This implies that the transition state formation from the conjugate acid in the rate-limiting step is controlled by this acidity function and not by H_A. In a recent analysis of the rate maxima which exist in the acid-hydrolysis of benz-amides, Carpentier and co-workers have proposed that the rate maxima occur because the acid-base pre-equilibrium step and the transition state formation step are governed by different acidity functions⁷. In particular the acidity function controlling the transition state formation increases less rapidly than the acidity function governing the acid-base equilibrium, with increasing acid concentration.

Consideration of the results of this preliminary investigation, in the light of Carpentier's approach, points to the operation of an A2 - type mechanism (equ 1) in which the substrates are significantly protonated in the more concentrated acid solutions, in broad agreement with Mane and Jagdale.

$$R = C = NHOH + H^{+} = R = C = NHOH = 2$$

$$R = C = NHOH = 2$$

$$R = C = NHOH = 2$$

$$R = C = NHOH = 2$$

$$H_{2}O$$

$$H_{2}O$$

$$H_{2}O$$

In particular the rate maxima can be considered a direct result of steps 1 and 2 being controlled by the amide acidity function and the ketone acidity function respectively.

We thank the Royal Society of Chemistry and the College Research Committee for financial support.

REFERENCE AND NOTES

- 1 A J Buglass, K Hudson and J G Tillett, J Chem Soc (B), 1971, 123.
- 2 B S Mane and M H Jagdale, React kinet Cat lett, 1977, 6, 417.
- 3 N-hydroxy-2,2-dimethylpropanamide and N-hydroxy-2-phenylethanamide, respectively.
- 4 K Yates, J B Stevens and A R Katritzky, Can J Chem, 1964, 42, 1957.

$$pK_{BH}$$
 = log (A - A_B)/(A_{BH} + - A) + H_x (= logI + H_x)

 $A_B^{}$, $A_{BH}^{}$ + and A are respectively the absorbance of the base, its conjugate acid and a mixture of the two at a particular value of H.

5 P Lemetais and J M Carpentier, J Chem Research, 1981 (S) 282; (M) 3369

$$1/(A - A_B) = 1/(A_B - A_{BH}) + K_{BH}/(A_B - A_{BH}) x$$

The symbols have the same meaning as for ref 4; $H_x = -\log h_x$.

- 6 Monitored by the Fe(III) complexation method described in ref 1; λ_{max} = 520 nm.
- 7 P Lemetais and J M Carpentier, <u>J Chem Research</u>, 1983, (S) 34; (M) 0358.

(Received in UK 19 May 1987)

3284